fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
نویسندگان
چکیده
Functional magnetic resonance imaging (fMRI) studies of the human brain have suggested that low-frequency fluctuations in resting fMRI data collected using blood oxygen level dependent (BOLD) contrast correspond to functionally relevant resting state networks (RSNs). Whether the fluctuations of resting fMRI signal in RSNs are a direct consequence of neocortical neuronal activity or are low-frequency artifacts due to other physiological processes (e.g., autonomically driven fluctuations in cerebral blood flow) is uncertain. In order to investigate further these fluctuations, we have characterized their spatial and temporal properties using probabilistic independent component analysis (PICA), a robust approach to RSN identification. Here, we provide evidence that: i. RSNs are not caused by signal artifacts due to low sampling rate (aliasing); ii. they are localized primarily to the cerebral cortex; iii. similar RSNs also can be identified in perfusion fMRI data; and iv. at least 5 distinct RSN patterns are reproducible across different subjects. The RSNs appear to reflect "default" interactions related to functional networks related to those recruited by specific types of cognitive processes. RSNs are a major source of non-modeled signal in BOLD fMRI data, so a full understanding of their dynamics will improve the interpretation of functional brain imaging studies more generally. Because RSNs reflect interactions in cognitively relevant functional networks, they offer a new approach to the characterization of state changes with pathology and the effects of drugs.
منابع مشابه
Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملBrain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...
متن کاملSpatio-Temporal Correlation Tensors Reveal Functional Structure in Human Brain
Resting state functional magnetic resonance imaging (fMRI) has been commonly used to measure functional connectivity between cortical regions, while diffusion tensor imaging (DTI) can be used to characterize structural connectivity of white matter tracts. In principle combining resting state fMRI and DTI data could allow characterization of structure-function relations of distributed neural net...
متن کاملFrequency specificity of functional connectivity in brain networks
Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have been shown to be associated with electroencephalography (EEG) power fluctuations in multiple brain networks within predefined frequency bands. However, it remains unclear whether frequency-specific characteristics exist in the resting-state fMRI signal. In this study, fMRI signals in five functional bra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2006